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Introduction: SPD Matrices

● SPD Matrices satisfy 
○ Σ = ΣT

○ 𝛌i(Σ) > 0, ∀i
○ The matrix can be decomposed 

in several useful ways

● Covariance Matrices
○ Covariance matrices are 

necessarily SPD
○ Population values often unknown Fig. courtesy of CueMath



Introduction: SPD Manifold and Random Matrices

● Manifold of SPD Matrices
○ The set of d x d SPD matrices 

forms a Riemannian Manifold, ℙd, 
with dimension d(d+1)/2

ℙd ⊆ ℍd ⊆ 𝕄d

● Random Matrix Ensembles
○ Random matrices with elements 

drawn from a Normal distribution 
with zero-mean and non-identity 
covariance Φ are drawn from the 
“CGSE”



Introduction: Matrix Exponentiation and Applications

● Exponentiated Matrix Distributions
○ Sample random symmetric matrices from the 

CGSE and other ensembles
○ Map these matrices onto the SPD manifold via 

matrix exponentiation

● Applications to Linear Inverse Problems
○ Given observed data and known forward model, 

we wish to recover unknown parameters
■ d = As + 𝝴

○ Bayesian solutions to linear-Gaussian inverse 
problems are parametrized by SPD matrices 

Fig. courtesy of NeuroImage, 2021
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Characterizing Symmetric Matrix Distributions

Joint Element Density



1)                                       i.i.d.

2)                                           i.i.d

3)                                           

Isometric Along x_1 Along x_4Along (x_2+x_3)/2



Joint Element Density of the CGSE
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Exponentiating Symmetric Matrix Distributions

Matrix Exponential:                                       

                                                                                                                       

Matrix Exponential Base      : 



Exponentiating Symmetric Matrix Distributions

Distribution:      CGSE (red)                                      Exponentiated CGSE (yellow)

(front) (side)



Exponentiating Symmetric Matrix Distributions
Density of A ~ 
CGSE(d, Γ)

Jacobian of 
Inverse 
Transformation

Transformed 
Density of 
S = exp(A)
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Applying SPD Matrix Distributions to Linear Inverse 
Problems 



Applying SPD Matrix Distributions to Linear Inverse 
Problems 
Let A, d, µ, λ, and Γnoise – all parameters of our 
inverse problem except Γprior – be fixed. 

Assume that Γprior comes from a projected 
symmetric matrix ensemble, Γprior = expΣ E where 
Σ ∈ Pn and E ∈ Hn is random with E[E] = 0n×n . 

What is the resulting distribution of the solutions 
smap? Is there much variability? How faithful is 
smap to the original data s? How does varying Σ or 
the model for E change the solution distribution?



Thank you!


