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Introduction: SPD Matrices

e SPD Matrices satisfy
o ¥=3T
o A(Z)>0, Vi
o The matrix can be decomposed
in several useful ways

e (Covariance Matrices
o Covariance matrices are
necessarily SPD
o Population values often unknown

Covariance Matrix Formula f
Var(x,) ... Cov(x ,x,)
Cov(x ,X,) = Var(x )

Fig. courtesy of CueMath
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Introduction; SPD Manifold and Random Matrices

e Manifold of SPD Matrices

o The set of d x d SPD matrices 100 1
forms a Riemannian Manifold, F)
with dimension d(d+1)/2 50 -

P, S M, S M,
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e Random Matrix Ensembles
o Random matrices with elements 100
drawn from a Normal distribution
with zero-mean and non-identity
cgégsrllzance ® are drawn from the



Introduction: Matrix Exponentiation and Applications

Fig. courtesy of Neurolmage, 2021
e Exponentiated Matrix Distributions

o  Sample random symmetric matrices from the - Ty
CGSE and other ensembles T S e

o Map these matrices onto the SPD manifold via = Tt’d X ) X“\\‘
matrix exponentiation ~— v \

e Applications to Linear Inverse Problems
o  Given observed data and known forward model,
we wish to recover unknown parameters
m d=As+e
o Bayesian solutions to linear-Gaussian inverse
problems are parametrized by SPD matrices
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1. Characterizing symmetric matrix distributions




Characterizing Symmetric Matrix Distributions
A= (B+ B")/2

Symmetric Matrix Ensembles

Elements are Independent Elements are correlated
| |
Gaussian Orthogonal Ensemble, Colored Gaussian
Uniform Ensemble Symmetric Ensemble
A= (B + BT)/2 where B has ind. entries A= (B+ BT)/2 where

Joint Element Density



Isometric Along x_1 Along (x_2+x_3)/2 Along x_4

Figure 1: Gaussian Orthogonal Ensemble

Figure 2: Uniform Ensemble

Figure 3: Colored Gaussian Symmetric Ensembles



Joint Element Density of the CGSE

e 1 B oge sga
A~ CGSE(d,T) fease@r) = (V) = — exp ( —s VIOV
l V@D 2
S : = LT T
ai; a2 -+ Qid U1 ai
G2 - Q24 U2 a12 V ~ N(O \I’)
: V= U3 = | Q22 I ,‘ i i
— a. : : U = [Upg] e =Tig =Tis
dd
|_:’Ud(d+1)/2_ | Add | f—l(p) — (ip,jp) and f_l(q) — (,’:q,jq)
Qi = V(i)

fG,5) =i+ —1)/2 o) = (p—j(j —-1)/2,j=[v(2p+1/4) +1/2] -1

1<i<j<d




Outline

2. Exponentiating symmetric matrix distributions




Exponentiating Symmetric Matrix Distributions

EeHy X ePy
Matrix Exponential:

exp(€) = exp(Q ' AQ) = Q" exp(A)Q
— QTdiag{e)\la e 7e>\n}Q

Matrix Exponential Base >

S = expy € = L2 exp(R12E0"1/2)01/2




Exponentiating Symmetric Matrix Distributions

Distribution:  CGSE (red)

\/

Exponentiated CGSE (yellow)




Exponentiating Symmetric Matrix Distributions

Density of A ~ ; Ty
CGSE(d.T) AFESRE /2m)d @2y e (_§V a V)
Jacobian of T = (1/1S) Thic; 9(M As) where

Inverse . A (log(Xi) — log(A\))/ (N = A;) if A > A
Transformation o i I 7 fA=;

|

Trans:formed J-1/+/(2m)d@+D/2| 9] - exp (—ivecd(log(S9))T ¥~ vecd(log(S)))
Density of

S = exp(A)
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3. Applying SPD matrix distributions in Linear Inverse Problems




Applying SPD Matrix Distributions to Linear Inverse
Problems

Ax = B where A eR™" s the forward model

where x eR" is the unknown or what we would like to infer
where beR™ is the known data

Least Squares Equation: (ATA)x = ATb
max .. 5 s l—[p‘rior () ike (b]x)
marginal

xmap (AT nozseA + Az FI;I lO'I) (AT 7lOlS€b + AZF pr lor #)




Applying SPD Matrix Distributions to Linear Inverse
Problems

Let A, d, b, A, and 'noise — all parameters of our
inverse problem except I'prior — be fixed.

Assume that Mprior comes from a projected
symmetric matrix ensemble, 'prior = expZ E where
> € Pnand E € Hn is random with E[E] = Onxn .

What is the resulting distribution of the solutions
smap? Is there much variability? How faithful is
smap to the original data s? How does varying Z or
the model for E change the solution distribution?




Thank you!



